A Characterisation of the Z ⊕ 3z Lattice and Applications to Rational Homology Spheres

نویسنده

  • SAŠO STRLE
چکیده

We conjecture two generalisations of Elkies’ theorem on unimodular quadratic forms to non-unimodular forms. We give some evidence for these conjectures including a result for determinant 3. These conjectures, when combined with results of Frøyshov and of Ozsváth and Szabó, would give a simple test of whether a rational homology 3-sphere may bound a negative-definite four-manifold. We verify some predictions using Donaldson’s theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Points Inside Rational Simplices and the Casson Invariant of Brieskorn Spheres

From the very beginning, it was apparent that the Seiberg^Witten analogue of the instanton Floer homology of a (Z-)homology 3-sphere is no longer a topological invariant, since it can vary with the metric. W. Chen [2], Y. Lim [7] and Marcolli^Wang [8] have explained the metric dependence of the Euler characteristic of the SWF (1⁄4 Seiberg^Witten^Floer) homology. More precisely, if gi ði 1⁄4 0; ...

متن کامل

Holomorphic Disks and Topological Invariants for Rational Homology Three-spheres

The aim of this article is to introduce and study certain topological invariants for oriented, rational homology three-spheres Y . These groups are relatively Z-graded Abelian groups associated to SpinC structures over Y . Given a Heegaard splitting of Y = U0∪Σ U1, these theories are variants of the Lagrangian Floer homology for the g-fold symmetric product of Σ relative to certain totally real...

متن کامل

On the Reidemeister Torsion of Rational Homology Spheres

We prove that the modZ reduction of the Reidemeister torsion of a rational homology 3-sphere is naturally a Q/Z-valued quadratic function uniquely determined by a Q/Z-constant and the linking form. 2000 Mathematics Subject Classification. Primary 57M27, 57Q10.

متن کامل

Rational Surgery Formula for Habiro–le Invariants of Rational Homology 3–spheres

Habiro–Le invariants dominate sl2 Witten–Reshetikhin–Turaev invariants of rational homology 3–spheres at roots of unity of order coprime with the torsion. In this paper we give a formula for the Habiro–Le invariant of a rational homology 3–sphere obtained by rational surgery on a link in S. As an application, we compute this invariant for Seifert fibered spaces and for Dehn surgeries on twist k...

متن کامل

Einstein Metrics on Rational Homology Spheres

In this paper we prove the existence of Einstein metrics, actually SasakianEinstein metrics, on nontrivial rational homology spheres in all odd dimensions greater than 3. It appears as though little is known about the existence of Einstein metrics on rational homology spheres, and the known ones are typically homogeneous. The are two exception known to the authors. Both involve Sasakian geometr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003